Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1-tert-Butyl-2-methylphospholaneborane and its coupling product $2,2^{\prime}$ -bis(1-tert-butylphospholane-borane)

Atsushi Ohashi and Tsuneo Imamoto*

Department of Chemistry, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
Correspondence e-mail: imamoto@scichem.s.chiba-u.ac.jp

Received 18 February 2000
Accepted 13 March 2000
The title compound, $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{BP}$, and its coupling product, $\mathrm{C}_{16} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{P}_{2}$, were synthesized and their crystal structures analyzed by X -ray diffraction. The molecular structures clearly explain the stereoselective reaction pathways leading to the products. The average $\mathrm{P}-\mathrm{B}$ distance and $\mathrm{C}-\mathrm{P}-\mathrm{B}$ angle are $1.929 \AA$ and 114°, respectively.

Comment

Optically active phosphines have played an important role as chiral ligands in various metal-catalyzed asymmetric reactions. Among them, trialkylphosphines are known to be highly reactive due to donating lone-pair electrons on the P atom. In our previous work (Imamoto et al., 1998), P-chirogenic bistrialkylphosphine ligands, (S, S)-1,2-bis[boranato(alkyl)methylphosphino]ethanes (alkyl $=$ tert-butyl, 1,1-diethylpropyl, 1-adamantyl, cyclopentyl or cyclohexyl), are extremely effective in the asymmetric hydrogenation of various α, β unsaturated α-amino acids and their esters. In order to obtain more effective asymmetric reactions, we intended to design and synthesize further trialkylphosphine ligands with a more rigid structure.

1-tert-Butylphospholane-borane, (I), was synthesized from phosphorus trichloride and 1,4-butanebis(magnesium bromide). The enantioselective deprotonation of (I) was performed using sec-butyllithium and (- -sparteine as a chiral
source (Muci et al., 1995). The monophosphine-borane, (rac)-1-tert-butyl-2-methylphospholane-borane, (II), was synthesized in almost 100% yield by deprotonation of (I) and the subsequent reaction with methyl iodide. Although a (-)-sparteine/sec-butyllithium reagent system was used, racemic (II) was obtained.

Figure 1
ORTEPII (Johnson, 1976) drawing of (II).

The ORTEPII (Johnson, 1976) drawing of the molecular structure of (II) is shown in Fig. 1. The conformation around the $\mathrm{P}-\mathrm{C} 1$ bond is an almost eclipsed form; the torsion angles of $\mathrm{B}-\mathrm{P}-\mathrm{C} 1-\mathrm{C} 9$ and $\mathrm{C} 4-\mathrm{P}-\mathrm{C} 1-\mathrm{C} 2$ are -25.4 (3) and $-18.1(2)^{\circ}$, respectively. This conformation suggests that the methyl group should attack the generated anionic C1 atom from the less sterically hindered side to avoid the heavy steric repulsion with the bulky tert-butyl group. This may indicate that (II) was produced in a perfect diastereoselective way. The oxidative coupling reaction of (I) was performed using cupric chloride instead of methyl iodide after deprotonation of (I). meso-2,2'-Bis(1-tert-butylphospholane-borane), (III), was obtained in ca 10% yield, with 40% recovery of the starting material.

The ORTEPII (Johnson, 1976) drawing of the molecular structure of (III) is shown in Fig. 2. It clearly indicates that the molecule is a meso structure. The formation of this meso compound rather than its racemic form can be explained by considering the steric repulsion of the two tert-butyl groups. Thus, two generated radicals approach from the most sterically favorable side. The heavy steric repulsion may cause the low reaction yield of (III).

Figure 2
ORTEPII (Johnson, 1976) drawing of (III).

Selected bond distances, angles, and torsion angles are listed in Tables 1 and 2. The corresponding distances and angles are in good agreement between the two molecules. The average $\mathrm{P}-\mathrm{B}$ distance and $\mathrm{C}-\mathrm{P}-\mathrm{B}$ angle are $1.929 \AA$ and 114°, respectively. There are no short contacts between the molecules in the two crystal structures.

Experimental

To a solution of sec-butyllithium and (-)-sparteine in ether was added (I) at 195 K . After the mixture was stirred for 3 h , methyl iodide or cupric chloride was added. Both crude products were purified by column chromatography on silica gel using toluene/hexane (20:1) as the eluent. Compound (II) was obtained as colorless cubes on standing under reduced pressure. Compound (III) was recrystallized from chloroform.

Compound (II)

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{BP}$
$M_{r}=172.06$
Orthorhombic, Pna2 ${ }_{1}$
$a=12.52$ (2) \AA
$b=6.944$ (1) \AA
$c=12.919(1) \AA$
$V=1123(1) \AA^{3}$
$Z=4$
$D_{x}=1.017 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-7S diffractometer

 $\omega-2 \theta$ scansAbsorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.576, T_{\text {max }}=0.602$
1056 measured reflections
1056 independent reflections
1030 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.02 \\
& \theta_{\max }=67.61^{\circ} \\
& h=-15 \rightarrow 0 \\
& k=0 \rightarrow 8 \\
& l=0 \rightarrow 15 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Refinement

Refinement on F
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00022\left|F_{o}\right|^{2}\right]$
$R=0.039$
$(\Delta / \sigma)_{\max }=0.012$
$\Delta \rho_{\max }=0.40 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$
Extinction correction: Zachariasen
(1967) type 2 Gaussian isotropic

Extinction coefficient: 0.035 (7)

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$\mathrm{P}-\mathrm{C} 1$	$1.843(4)$	$\mathrm{P}-\mathrm{B}$	$1.926(4)$
$\mathrm{P}-\mathrm{C} 4$	$1.829(4)$	$\mathrm{C} 1-\mathrm{C} 9$	$1.523(4)$
$\mathrm{P}-\mathrm{C} 5$	$1.851(4)$		
			$109.8(2)$
$\mathrm{C} 1-\mathrm{P}-\mathrm{C} 4$	$95.7(2)$	$\mathrm{C} 4-\mathrm{P}-\mathrm{C} 5$	$112.0(2)$
$\mathrm{C} 1-\mathrm{P}-\mathrm{C} 5$	$107.8(2)$	$\mathrm{C} 4-\mathrm{P}-\mathrm{B}$	$113.9(2)$
$\mathrm{C} 1-\mathrm{P}-\mathrm{B}$	$116.2(2)$	$\mathrm{C} 5-\mathrm{P}-\mathrm{B}$	
			$-25.1(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P}-\mathrm{C} 4$	$-18.2(2)$	$\mathrm{C} 9-\mathrm{C} 1-\mathrm{P}-\mathrm{B}$	
$\mathrm{C} 5-\mathrm{P}-\mathrm{C} 1-\mathrm{C} 9$	$104.1(3)$		

Compound (III)

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{P}_{2}$
$D_{x}=1.017 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=314.04$
Monoclinic, $C 2 / c$
$a=10.346$ (1) \AA
$b=9.796$ (2) \AA
$c=20.597(1) \AA$
$\beta=100.805(8)^{\circ}$
$V=2050.5(4) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 20 reflections
$\theta=22.1-24.7^{\circ}$
$\mu=1.817 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Prismatic, colorless
$0.48 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku AFC-5S diffractometer
$R_{\text {int }}=0.022$
$\omega-2 \theta$ scans
$\theta_{\text {max }}=67.57^{\circ}$
Absorption correction: ψ scan
$h=0 \rightarrow 12$
$k=0 \rightarrow 11$
(North et al., 1968)
$l=-24 \rightarrow 24$
$T_{\text {min }}=0.517, T_{\text {max }}=0.695$
3 standard reflections every 150 reflections intensity decay: 0.76%
1839 independent reflections
1376 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$

Refinement

Refinement on F
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00022\left|F_{o}\right|^{2}\right]$
$R=0.048$
$w R=0.058$
$S=1.787$
1423 reflections
92 parameters
H -atom parameters not refined
$(\Delta / \sigma)_{\max }=0.010$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1967) type 2 Gaussian isotropic Extinction coefficient: 0.086 (5)

Table 2
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (III).

$\mathrm{P}-\mathrm{C} 1$	$1.859(3)$	$\mathrm{P}-\mathrm{B}$	$1.919(4)$
$\mathrm{P}-\mathrm{C} 4$	$1.834(3)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.534(4)$
$\mathrm{P}-\mathrm{C} 5$	$1.854(3)$		
			$107.2(1)$
$\mathrm{C} 1-\mathrm{P}-\mathrm{C} 4$	$95.1(1)$	$\mathrm{C} 4-\mathrm{P}-\mathrm{C} 5$	$110.5(2)$
$\mathrm{C} 1-\mathrm{P}-\mathrm{C} 5$	$110.7(1)$	$\mathrm{C} 4-\mathrm{P}-\mathrm{B}$	$115.4(2)$
$\mathrm{C} 1-\mathrm{P}-\mathrm{B}$	$115.8(2)$	$\mathrm{C} 5-\mathrm{P}-\mathrm{B}$	
			$15.6(2)$
$\mathrm{C} 1-\mathrm{C}^{\mathrm{i}}-\mathrm{P}^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$	$109.7(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P}-\mathrm{C} 4$	
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}-\mathrm{P}^{\mathrm{i}}-\mathrm{B}^{\mathrm{i}}$	$-24.1(3)$		
Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$.			

No Friedel reflections were measured for (I) and consequently we were unable to determine the correct direction of the polar axis in this system.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation \& Rigaku Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

This work was supported by the Grant-in-Aid from the Ministry of Education, Science, Sport and Culture, Japan. The authors thank Mr Masayoshi Nishiura and Professor Kentaro Yamguchi, Chiba University, for X-ray analysis and valuable discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1100). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.
Imamoto, T., Watanabe, J., Wada, Y., Masuda, H., Yamada, H., Tsuruta, H., Matsukawa, S. \& Yamaguchi, K. (1998). J. Am. Chem. Soc. 120, 1635-1636.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Molecular Structure Corporation \& Rigaku Corporation (1999). TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA. Rigaku, 3-9-12 Akishima, Tokyo, Japan.
Muci, A. R., Campos, K. R. \& Evans, D. A. (1995). J. Am. Chem. Soc. 117, 9075-9076.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

