Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

1-*tert*-Butyl-2-methylphospholaneborane and its coupling product 2,2'bis(1-*tert*-butylphospholane-borane)

Atsushi Ohashi and Tsuneo Imamoto*

Department of Chemistry, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan Correspondence e-mail: imamoto@scichem.s.chiba-u.ac.jp

Received 18 February 2000 Accepted 13 March 2000

The title compound, $C_9H_{22}BP$, and its coupling product, $C_{16}H_{38}B_2P_2$, were synthesized and their crystal structures analyzed by X-ray diffraction. The molecular structures clearly explain the stereoselective reaction pathways leading to the products. The average P–B distance and C–P–B angle are 1.929 Å and 114°, respectively.

Comment

Optically active phosphines have played an important role as chiral ligands in various metal-catalyzed asymmetric reactions. Among them, trialkylphosphines are known to be highly reactive due to donating lone-pair electrons on the P atom. In our previous work (Imamoto *et al.*, 1998), P-chirogenic bistrialkylphosphine ligands, (S,S)-1,2-bis[boranato(alkyl)-methylphosphino]ethanes (alkyl = *tert*-butyl, 1,1-diethylpropyl, 1-adamantyl, cyclopentyl or cyclohexyl), are extremely effective in the asymmetric hydrogenation of various α,β -unsaturated α -amino acids and their esters. In order to obtain more effective asymmetric reactions, we intended to design and synthesize further trialkylphosphine ligands with a more rigid structure.

1-*tert*-Butylphospholane–borane, (I), was synthesized from phosphorus trichloride and 1,4-butanebis(magnesium bromide). The enantioselective deprotonation of (I) was performed using *sec*-butyllithium and (-)-sparteine as a chiral

source (Muci *et al.*, 1995). The monophosphine–borane, (*rac*)-1-*tert*-butyl-2-methylphospholane–borane, (II), was synthesized in almost 100% yield by deprotonation of (I) and the subsequent reaction with methyl iodide. Although a (-)sparteine/*sec*-butyllithium reagent system was used, racemic (II) was obtained.

The ORTEPII (Johnson, 1976) drawing of the molecular structure of (II) is shown in Fig. 1. The conformation around the P-C1 bond is an almost eclipsed form; the torsion angles of B-P-C1-C9 and C4-P-C1-C2 are -25.4 (3) and -18.1 (2)°, respectively. This conformation suggests that the methyl group should attack the generated anionic C1 atom from the less sterically hindered side to avoid the heavy steric repulsion with the bulky *tert*-butyl group. This may indicate that (II) was produced in a perfect diastereoselective way. The oxidative coupling reaction of (I) was performed using cupric chloride instead of methyl iodide after deprotonation of (I). *meso-2,2'*-Bis(1-*tert*-butylphospholane-borane), (III), was obtained in *ca* 10% yield, with 40% recovery of the starting material.

The *ORTEPII* (Johnson, 1976) drawing of the molecular structure of (III) is shown in Fig. 2. It clearly indicates that the molecule is a *meso* structure. The formation of this *meso* compound rather than its racemic form can be explained by considering the steric repulsion of the two *tert*-butyl groups. Thus, two generated radicals approach from the most sterically favorable side. The heavy steric repulsion may cause the low reaction yield of (III).

Figure 2 ORTEPII (Johnson, 1976) drawing of (III).

Selected bond distances, angles, and torsion angles are listed in Tables 1 and 2. The corresponding distances and angles are in good agreement between the two molecules. The average P-B distance and C-P-B angle are 1.929 Å and 114°, respectively. There are no short contacts between the molecules in the two crystal structures.

Experimental

To a solution of *sec*-butyllithium and (–)-sparteine in ether was added (I) at 195 K. After the mixture was stirred for 3 h, methyl iodide or cupric chloride was added. Both crude products were purified by column chromatography on silica gel using toluene/hexane (20:1) as the eluent. Compound (II) was obtained as colorless cubes on standing under reduced pressure. Compound (III) was recrystallized from chloroform.

Cu $K\alpha$ radiation

reflections

 $\mu = 1.690 \ {\rm mm^{-1}}$

Prismatic, colorless

 $0.40 \times 0.30 \times 0.30 \mbox{ mm}$

 $\theta = 7.3 - 34.7^{\circ}$

T = 123.2 K

 $\begin{aligned} R_{\rm int} &= 0.02\\ \theta_{\rm max} &= 67.61^\circ\\ h &= -15 \rightarrow 0\\ k &= 0 \rightarrow 8\\ l &= 0 \rightarrow 15\\ 3 \ {\rm standard\ reflections}\\ {\rm every\ 150\ reflections}\\ {\rm intensity\ decay:\ 1\%} \end{aligned}$

Cell parameters from 25

Compound (II)

Crystal data

 $\begin{array}{l} C_9H_{22}BP\\ M_r = 172.06\\ Orthorhombic, Pna2_1\\ a = 12.52 \ (2) \ \AA\\ b = 6.944 \ (1) \ \AA\\ c = 12.919 \ (1) \ \AA\\ V = 1123 \ (1) \ \AA^3\\ Z = 4\\ D_x = 1.017 \ Mg \ m^{-3} \end{array}$

Data collection

Rigaku AFC-7S diffractometer
ω –2 θ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.576, \ T_{\max} = 0.602$
1056 measured reflections
1056 independent reflections
1030 reflections with $F^2 > 2\sigma(F^2)$

Refinement

Refinement on F	$w = 1/[\sigma^2(F_o) + 0.00022 F_o ^2]$
R = 0.039	$(\Delta/\sigma)_{\rm max} = 0.012$
wR = 0.050	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.913	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
1030 reflections	Extinction correction: Zachariasen
102 parameters	(1967) type 2 Gaussian isotropic
H-atom parameters not refined	Extinction coefficient: 0.035 (7)

Table	1
-------	---

0		
Selected geometric parameters (A,	°) for	(II).

P-C1 P-C4 P-C5	1.843 (4) 1.829 (4) 1.851 (4)	P-B C1-C9	1.926 (4) 1.523 (4)
C1-P-C4 C1-P-C5 C1-P-B	95.7 (2) 107.8 (2) 116.2 (2)	C4-P-C5 C4-P-B C5-P-B	109.8 (2) 112.0 (2) 113.9 (2)
C2-C1-P-C4 C5-P-C1-C9	-18.2 (2) 104.1 (3)	С9-С1-Р-В	-25.1 (4)

Compound (III)

Crystal data

$C_{16}H_{38}B_2P_2$	$D_x = 1.017 \text{ Mg m}^{-3}$
$M_r = 314.04$	Cu $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 20
a = 10.346(1) Å	reflections
b = 9.796 (2) Å	$\theta = 22.1 - 24.7^{\circ}$
c = 20.597(1) Å	$\mu = 1.817 \text{ mm}^{-1}$
$\beta = 100.805 \ (8)^{\circ}$	T = 296.2 K
V = 2050.5 (4) Å ³	Prismatic, colorless
Z = 4	$0.48 \times 0.30 \times 0.20 \ \text{mm}$
Data collection	
Rigaku AFC-5S diffractometer	$R_{\rm int} = 0.022$
ω –2 θ scans	$\theta_{\rm max} = 67.57^{\circ}$
Absorption correction: ψ scan	$h = 0 \rightarrow 12$
(North et al., 1968)	$k = 0 \rightarrow 11$
$T_{\min} = 0.517, \ T_{\max} = 0.695$	$l = -24 \rightarrow 24$
1945 measured reflections	3 standard reflections
1839 independent reflections	every 150 reflections

1376 reflections with $F^2 > 2\sigma(F^2)$

Refinement Refinement on F

R = 0.048 wR = 0.058 S = 1.7871423 reflections 92 parameters H-atom parameters not refined

Table 2

Selected geometric parameters (Å, °) for (III).

P-C1	1.859 (3)	P-B	1.919 (4)
P-C4	1.834 (3)	C1-C1 ⁱ	1.534 (4)
P-C5	1.854 (3)		
C1-P-C4	95.1 (1)	C4-P-C5	107.2 (1)
C1-P-C5	110.7 (1)	C4-P-B	110.5 (2)
C1-P-B	115.8 (2)	C5-P-B	115.4 (2)
$C1 - C1^{i} - P^{i} - C5^{i}$	109.7 (3)	C2-C1-P-C4	15.6 (2)
$C1-C1^i-P^i-B^i$	-24.1 (3)		

intensity decay: 0.76%

 $w = 1/[\sigma^2(F_o) + 0.00022|F_o|^2]$

Extinction correction: Zachariasen

Extinction coefficient: 0.086 (5)

(1967) type 2 Gaussian isotropic

 $(\Delta/\sigma)_{\rm max} = 0.010$

 $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta\rho_{\rm min} = -0.18~{\rm e}~{\rm \AA}^{-3}$

Symmetry code: (i) $\frac{3}{2} - x, \frac{1}{2} - y, 1 - z$.

No Friedel reflections were measured for (I) and consequently we were unable to determine the correct direction of the polar axis in this system.

For both compounds, data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1993); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation & Rigaku Corporation, 1999); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *TEXSAN*; molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

This work was supported by the Grant-in-Aid from the Ministry of Education, Science, Sport and Culture, Japan. The authors thank Mr Masayoshi Nishiura and Professor Kentaro Yamguchi, Chiba University, for X-ray analysis and valuable discussions. Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1100). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435.
- Imamoto, T., Watanabe, J., Wada, Y., Masuda, H., Yamada, H., Tsuruta, H., Matsukawa, S. & Yamaguchi, K. (1998). J. Am. Chem. Soc. 120, 1635–1636.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Molecular Structure Corporation & Rigaku Corporation (1999). *TEXSAN*. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA. Rigaku, 3-9-12 Akishima, Tokyo, Japan.
- Muci, A. R., Campos, K. R. & Evans, D. A. (1995). J. Am. Chem. Soc. 117, 9075–9076.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.